ESTUDO DE VAZÕES MÍNIMAS Q_{1,10} e Q_{7,10} DE RIOS DO PARANÁ SEGUNDO DISTRIBUIÇÃO GENERALIZADA

Manoel Moisés Ferreira de Queiroz

Douto rem Engenharia Civil do Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069 – Cx. Postal 711 -Cascavel, PR. Brasil. CEP 85814-110. Fone: (45) 3220-3262. E-mail: mfqueiroz@unioeste.br

Silvio César Sampaio

Doutor em Engenharia Agrícola do Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069 – Cx. Postal 711 -Cascavel, PR. Brasil.CEP 85814-110. Fone: (45) 3220-3262. E-mail: ssampaio@unioeste.br

Benedito Martins Gomes

Doutor em Engenharia Agrícola do Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069 – Cx. Postal 711 -Cascavel, PR. Brasil.CEP 85814-110. Fone: (45) 3220 3175. E-mail:bmgomes@unioeste.br

Caroline Iost

Tecnóloga Ambiental Mestranda em Engenharia Agrícola do Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069 - Cx. Postal 711-Cascavel, PR. Brasil.CEP 85814-110. Fone: (45) 3220-3262. E-mail: carolineiost@yahoo.com.br

RESUMO - Uma das funções oferecidas pela água é a manutenção de vazões mínimas que suportem o ecossistema aquático. Os cursos d'água desde muito tempo têm sido utilizados como receptores de efluentes domésticos, industriais e agro-industriais. A carga de efluente absorvida por um rio depende da dimensão de sua vazão, assim o estudo de vazões mínimas é relevante sobre este aspecto, entre outros, onde tem sido empregada a vazão mínima de sete dias como limite para o estabelecimento da taxa de emissão que pode ser lançado em um curso d'água. O objetivo deste trabalho foi modelar as séries de vazões mínimas de 1 e de 7 dias observadas em rios do estado do Paraná, através da distribuição de probabilidade generalizada de valores extremos - GEV, utilizando o método de momentos de combinação linear das estatísticas de altas ordens (momentos LH) para estimação de seus parâmetros. Como resultado obtiveram-se ajustes da distribuição GEV às formas de valores extremos do tipo VEI (Gumbel), VEII e VEIII, sendo todos aceitos pelo teste de Kolmogorov-Smirnov, com nível de significância de 5%.

PALAVRAS-CHAVE: vazões ecológicas, momentos LH, análise de freqüência, distribuição GEV.

ESTUDIO CAUDALES MÍNIMOS Q1, Q7 Y 10, 10 DE LOS RIOS AMPLIA DISTRIBUCIÓN DE PARANA SEGUNDA

RESUMEN - Una de las funciones proporcionadas por el agua es el mantenimiento de caudales mínimos que el apoyo del ecosistema acuático. Los cursos de agua hace mucho tiempo han sido utilizadas como receptoras de aguas residuales domésticas, los productos industriales y agroindustriales. La carga de los efluentes absorbida por un río depende del tamaño de su flujo, por lo que el estudio de caudales mínimos es pertinente a este respecto, entre otros, se ha utilizado en el caudal mínimo de siete días como límite para el establecimiento de la tasa de emisión que puede ser liberado en un curso de agua. El objetivo fue modelar las series de flujos y un mínimo de 7 días observados en los ríos en el estado de Paraná, a través de la distribución de probabilidad generalizada de valores extremos - GEV, utilizando el método de los momentos de combinación lineal de las estadísticas de orden superior (momentos LH) para estimar sus parámetros. Como resultado se obtuvo accesos de la distribución GVE a las formas de extrema valor de tipo de VEI (Gumbel), y Veyes Veyes, todas aceptadas por la prueba de Kolmogorov-Smirnov, con nivel de significancia del 5%.

PALABRAS CLAVE: caudales ecológicos, los momentos de LH, análisis de frecuencia,

STUDIES OF MINIMUM OUTFLOWS Q_{1,10} e Q_{7,10} FROM PARANA'S RIVERS ACCORDING TO GENERALIZED DISTRIBUTION

ABSTRACT - One of the functions offered by water is the maintenance of minimum outflows that supports the aquatic ecosystem. Since a long time the tragetories of the water have been used as receivers from domestic, industrial and agro-industrial effluents. The load of effluent's absorbed by a river depends on the dimension of his outflow, this way the study of minimum outflows is prominent on this aspect, from among others, where has been applyed the minimum outflows of seven days as limit to the establishment of emission's rate that can be thrown in a course of water. The subject of this work was to model the series of minimum outflows of 1 and of 7 days observed in rivers from Paraná's state, through the distribution of the probability extreme worthy of generalized - GEV, using the approach for the time being of lineal combination of the statistics of high orders (moments LH) to estimate the parameters. As result obtained some adjustment of the distribution GEV to the extreme worthy forms of the kind VEI (Gumbel), VEII and VEIII, being all of them accepted by the test of Kolmogorov-Smirnov, with level of significance of 5%.

KEYWORDS: ecological outflows, LH moments, analysis of frequency, distribution GEV.

INTRODUÇÃO

Uma das variáveis requeridas para possibilitar a continuidade das funções oferecidas pela água é a manutenção de vazões mínimas que suportem o ecossistema aquático. Estas vazões têm sido chamadas de residuais, remanescentes, ecológicas e ambientais (LANNA & COBALCHINI, 2003), e são definidas através de valores numéricos que representam a quantidade de água que deve permanecer no leito do rio depois de retiradas as quantidades necessárias para atender usos externos tais como abastecimento público, industrial, irrigação e, em algumas instâncias, energia elétrica e atividades de recreação.

Em diversas atividades econômicas a água constitui um fator de produção cujos quantitativos podem atingir valores elevados dependendo da natureza da atividade. Os cursos d'água desde muito tempo têm sido utilizados como receptores de efluentes domésticos, industriais e agro-industriais. A carga de efluente absorvida por um rio depende da dimensão de sua vazão, assim o estudo de vazões mínimas é relevante sobre este aspecto, entre outros, onde tem sido empregada a vazão mínima de sete dias como limite para o estabelecimento da taxa de emissão que pode ser lançado em um curso d'água. De modo geral, a estimação da vazão de sete dias é feita através da análise de freqüência utilizando modelos probabilidade distribuição de conhecido. distribuição Recentemente, a de probabilidade generalizada de valores extremos (GEV), introduzida por Jenkinson (1955), tem encontrado muitas aplicações em hidrologia, com crescente aceitação para descrição dos eventos extremos naturais, decorrente da consideração teórica de que a distribuição de valores extremos de uma amostra converge assintoticamente para uma das três formas de valores extremos reunidas através da distribuição GEV, independente de sua distribuição subjacente (WANG,1997a). O uso da distribuição GEV associado ao método de estimação de parâmetros dos momentos de combinação lineares das estatísticas de altas ordens (momentos LH) tem produzido bons resultados de ajustes a dados de eventos hidrológicos máximos (WANG, 1997B; QUEIROZ, 2002; QUEIROZ & CHAUDHRy, 2003).

Esse trabalho teve como objetivo modelar as séries de vazões mínimas de um e de sete dias de duração, observadas em vários rios do Paraná através da distribuição GEV, utilizando o método dos momentos de combinação lineares das estatísticas de altas ordens (momentos LH) para estimação de seus parâmetros. Além de proceder a uma análise comparativa entre as distribuições de vazões mínimas diárias de 1 e de 7 dias, e de seus quantis com 10 anos de recorrência, representadas por $Q_{1,10}$ e $Q_{7,10}$, respectivamente.

MATERIAIS E MÉTODOS

Os dados de vazões mínimas de 1 e 7 dias utilizados neste trabalho foram obtidos de séries históricas de vazões médias diárias observadas em rios localizados nas Sub-Bacias 65, 81 e 82 (Tabelas 1 e 2) obtidas junto à Agência Nacional de Energia Elétrica (ANEEL).

As séries de vazão mínima de 1 dia foram construídas a partir do valor mínimo anual da vazão média diária de cada ano, enquanto que as séries de vazão mínima de 7 dias, representam o valor mínimo anual da média móvel de 7 valores consecutivos de vazões medias diárias em cada ano. As séries de vazões mínimas diárias de 1 dia, bem como as séries de 7 dias, foram ajustadas através da distribuição GEV, utilizando o método dos momentos LH para estimação de seus parâmetros.

Tabela 1 – Localização e descrição das estações fluviométricas e respectivos rios, com as correspondentes áreas de

drenagem, pertencentes à sub bacia 65.

Código da	Nome da Estação	Rio			UF	Área	Tamanho da
Estação			Latitude	Longitude		km ²	Série - anos
65010000	Fazendinha	Pequeno	-25: 31: 09	-49: 08: 48	PR	117	34
65011400	Prado velho-ucp	Belem	-25: 27: 00	-49: 144: 56	PR	42	17
65015400	Cachoeira	Miringuava	-25: 35: 21	-49: 13: 43	PR	301	17
65019700	Ponte da caximba	Barigui	-25: 36: 49	-49: 21: 24	PR	257	19
65025000	Guajuvira	Iguacu	-25: 36: 01	-49: 30: 48	PR	2578	19
65035000	Porto amazonas	Iguacu	-25: 32: 53	-49: 53: 22	PR	3662	63
65060000	São mateus do sul	Iguacu	-25: 52: 33	-50: 23: 23	PR	6065	64
65090000	Fragosos	Negro	-26: 09: 17	-49: 22: 50	PR	800	29
65100000	Rio negro	Negro	-26: 06: 35	-49: 48: 04	PR	3379	66
65135000	Rio da varzea dos lima	Da varzea	-25: 56: 04	-49: 23: 35	PR	602	57
65136550	Quitandinha	Da varzea	-25: 51: 51	-49: 30: 46	PR	1568	18
65155000	Sao bento	Da varzea	-25: 56: 44	-49: 47: 29	PR	2012	67
65200000	Pontilhão	Potinga	-25: 52: 00	-50: 33: 00	PR	1961	12
65220000	Fluviópolis	Iguaçu	-26: 01: 09	-50: 35: 33	PR	18300	32
65235000	Rio claro do sul	Claro	-25: 57: 21	-50: 41: 04	PR	475	18
65310000	União da vitória	Iguaçu	-26: 13: 41	-51: 04: 49	PR	24211	68
65825000	Santa clara	Jordão	-25: 38: 17	-51: 58: 02	PR	3913	49
65890000	Campo novo	Campo novo	-25: 54: 00	-52: 54: 00	PR	142	26
65945000	Ponte do vitorino	Vitorino	-26: 03: 02	-52: 48: 03	PR	545	40
65955000	Balsa do santana	Santana	-25: 54: 34	-52: 50: 59	PR	1720	41
65970000	Porto santo antonio	Guarani	-25: 23: 38	-53: 06: 14	PR	1024	17
65979000	São sebastião	Andrada	-25: 25: 59	-53: 31: 00	PR	1309	16
65981500	Ponte do capanema	Capanema	-25: 46: 12	-53: 36: 41	PR	1740	13
65985000	Estreito do iguaçu	Iguaçu	-25: 33: 00	-53: 46: 00	PR	62236	18
65993000	Salto cataratas	Iguaçu	-25: 40: 59	-54: 25: 59	PR	67317	53

Fonte: ANA (2008)

Tabela 2 - Localização e descrição das estações fluviométricas e respectivos rios, com as correspondentes áreas de drenagem, pertencentes às sub bacias 81 e 82.

Código da Estação	Nome da Estação	Rio	Latitude	Longitude	UF	Área km²	Tamanho da Série - anos
81019350	Ponte do açungui	Açungui	-25: 14: 12	-49: 35: 40	PR	540	15
81102000	Balsa do jacaré	Açungui	-24: 55: 49	-49: 28: 59	PR	1680	18
81107000	Foz do são sebastião	Ribeira do iguape	-24: 54: 06	-49: 26: 26	PR	3199	16
81120000	Costas	Da piedade	-25: 00: 29	-49: 20: 26	PR	402	15
81125000	Turvo	Turvo	-24: 45: 00	-49: 19: 59	PR	392	51
81135000	Balsa do cerro azul	Ribeira do iguape	-24: 47: 07	-49: 16: 21	PR	4570	64
81140000	Cerro azul	Ponta grossa	-24: 49: 39	-49: 15: 46	PR	435	50
81200000	Capela da ribeira	Ribeira do guape	-24: 39: 20	-48: 39: 59	PR	7252	60
81210000	Sitinho	Ribeirão grande	-24: 40: 59	-48: 49: 37	PR	348	10
81299000	Barragem capivari- 396	Capivari	-25: 13: 00	-48: 57: 00	PR	536	12
81300000	Praia grande	Capivari	-25: 10: 00	-48: 52: 59	PR	920	38
81335000	Córrego comprido	Pardo	-24: 44: 37	-48: 30: 17	PR	3076	17
82009080	Passo do vau	Taguaçaba	-25: 12: 00	-48: 28: 00	PR	88	16
82111000	Mergulhão	Cachoeira	-25: 18: 00	-48: 43: 00	PR	366	20
82121000	Limoeiro	Cachoeira	-25: 19: 00	-48: 42: 00	PR	372	21
82170000	Morretes	Nhundiaquara	-25: 28: 37	-48: 49: 49	PR	217	60
82195000	Marumbi	Marumbi	-25: 30: 49	-48: 53: 04	PR	80	18

Fonte: ANA (2008)

Distribuição GEV

A função de distribuição generalizada de valores extremos - GEV, que engloba as três formas assintóticas de distribuição de valores extremos conhecidas como valor extremo do tipo I (VEI), valor extremo do tipo II (VEII) e valor extremo do tipo III (VEIII) (FISHER & TIPPETT, 1928; GUMBEL, 1958), é definida, segundo Jenkinson (1955), como segue:

$$F(x) = P(X \le x) = \exp\left[-\left(1 - k\frac{x - u}{\alpha}\right)^{\frac{1}{k}}\right]$$
 (1)

Quando o parâmetro k se aproxima de zero a equação (1) converge para a distribuição Gumbel

$$F(x) = P(X \le x) = \exp\left[-\exp\left(-\frac{x - u}{\alpha}\right)\right]$$
 (2)

Sendo.

- distribuição VEI (distribuição Gumbel) $-\infty < x < +\infty$,

 $\mathcal{E} \leq x < +\infty$, k<0 - distribuição VEII

 $-\infty < x \le \omega$ k>0 - distribuição VEIII

em que u é um parâmetro de posicionamento com $-\infty < u < +\infty$, α é um parâmetro de escala com $0 < \alpha < +\infty$ e k é um parâmetro de forma com $-\infty < k < +\infty$. Assim, quando k>0 o limite superior da distribuição assintótica VEIII torna-se $\omega = u + \alpha/k$ e quando k<0 o limite inferior da distribuição assintótica VEII torna-se $\varepsilon = u + \alpha/k$. O p-ésimo quantil da distribuição GEV é dado pelas seguintes relações obtidas das Equações (1) e (2):

$$x_{p} = u + \frac{\alpha}{k} \left[1 - (-\ln(p))^{k} \right], \qquad k \neq 0, \quad 0
$$x_{p} = u - \alpha \ln[-\ln(p)], \qquad k = 0, \quad 0
(4)$$$$

$$x_p = u - \alpha \ln[-\ln(p)], \qquad k=0, \quad 0$$

z)], que resulta em:

$$z = \ln[-\ln(F(x))] \tag{5}$$

A variável reduzida de Gumbel também se relaciona com o período de retorno (T), T=1/(1-F(x)). Logo, a equação (2) pode ser usada para definir z com respeito às distribuições VEI, VEII e VEIII. Assim, em um gráfico x versus z definese o comportamento das três formas de distribuições de valores extremos, com relação à posição de plotagem de x, como mostra a Figura 1.

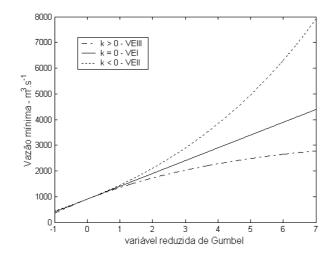


Figura 1- Distribuição das três formas de valores extremos representados pela GEV.

Momentos LH

Dada uma série de vazões mínimas, os três parâmetros u, α, κ da distribuição GEV foram estimados, considerando a estimativa dos momentos LH amostrais, $\hat{\lambda}_i^{\eta}$ (i=1, 2, 3, 4), como mostradas através das equações (6a a 6d), ordenando a série de vazões em $x_{(1)} \leq x_{(2)} \leq \dots \leq x_{(n)}$.

$$\hat{\lambda}_{1}^{\eta} = \frac{1}{{}^{n}C_{n+1}} \sum_{i=1}^{n} {}^{i-1}C_{\eta} x_{(i)}$$
 (6a)

$$\hat{\lambda}_{2}^{\eta} = \frac{1}{2} \frac{1}{{}^{n}C_{n+2}} \sum_{i=1}^{n} {}^{(i-1}C_{\eta+1} - {}^{i-1}C_{\eta} {}^{n-1}C_{1}) x_{(i)}$$
 (6b)

$$\hat{\lambda}_{3}^{\eta} = \frac{1}{3} \frac{1}{{}^{n}C_{n+3}} \sum_{i=1}^{n} \left({}^{i-1}C_{\eta+2} - 2^{i-1}C_{\eta+1} {}^{n-i}C_{1} + {}^{i-1}C_{\eta} {}^{n-i}C_{2} \right) x_{(i)}$$
 (6c)

$$\hat{\lambda}_{4}^{\eta} = \frac{1}{4} \frac{1}{{}^{n}C_{n+4}} \sum_{i=1}^{n} \left({}^{i-1}C_{\eta+3} - 3^{i-1}C_{\eta+2} {}^{n-i}C_{1} + 3^{i-1}C_{\eta+1} {}^{n-i}C_{2} - {}^{i-1}C_{\eta} {}^{n-i}C_{3} \right) x_{(i)}$$
 (6d)

onde

$${}^{m}C_{j} = {m \choose j} = \frac{m!}{j!(m-j)!}$$
 e ${}^{m}C_{j} = 0$ quando $j > m$.

comparando-os aos momentos da distribuição GEV, λ_i^{η} (i=1, 2, 3, 4), para cada valor selecionado de η (η = 0, 1, 2, 3...) e $\kappa \neq 0$, como descrito a seguir (WANG, 1997):

$$\lambda_1^{\eta} = u + \frac{\alpha}{\kappa} \left[1 - \Gamma(1+k)(\eta+1)^{-k} \right]$$
 (7a)

$$\lambda_2^{\eta} = \frac{(\eta + 2)\alpha\Gamma(1 + \kappa)}{2!\kappa} \left[-(\eta + 2)^{-\kappa} + (\eta + 1)^{-\kappa} \right]$$
 (7b)

$$\lambda_3^{\eta} = \frac{(\eta + 3)\alpha\Gamma(1 + \kappa)}{3!\kappa} \left[-(\eta + 4)(\eta + 3)^{-\kappa} + 2(\eta + 3)(\eta + 2)^{-\kappa} - (\eta + 2)(\eta + 1)^{-\kappa} \right]$$
(7c)

$$\lambda_4^{\eta} = \frac{(\eta + 4)\alpha\Gamma(1 + \kappa)}{4!\kappa} [-(\eta + 6)(\eta + 5)(\eta + 4)^{-\kappa} + 3(\eta + 5)(\eta + 4)(\eta + 3)^{-\kappa}$$
(7d)

$$-3(\eta+4)(\eta+3)(\eta+2)^{-\kappa}+(\eta+3)(\eta+2)(\eta+1)^{-\kappa}$$

As taxas de momentos LH da distribuição GEV foram calculadas de acordo com as seguintes relações:

$$\tau_2^{\eta} = \frac{1}{2} \frac{(\eta + 2)\alpha\Gamma(1+k) \left[-(\eta + 2)^{-k} + (\eta + 1)^{-k} \right]}{ku + \alpha \left[1 - \Gamma(1+k)(\eta + 1)^{-k} \right]}$$
(8a)

$$\tau_3^{\eta} = \frac{1}{3} \frac{(\eta+3)}{(\eta+2)} \left[\frac{-(\eta+4)(\eta+3)^{-k} + 2(\eta+3)(\eta+2)^{-k} - (\eta+2)(\eta+1)^{-k}}{-(\eta+2)^{-k} + (\eta+1)^{-k}} \right]$$
(8b)

$$\tau_4^{\eta} = \frac{1}{12} \frac{(\eta+4)}{(\eta+2)} \left[\frac{-(\eta+6)(\eta+5)(\eta+4)^{-k} + 3(\eta+5)(\eta+4)(\eta+3)^{-k}}{-(\eta+2)^{-k} + (\eta+1)^{-k}} \right] +$$

$$\left[\frac{-3(\eta+4)(\eta+3)(\eta+2)^{-k}+(\eta+3)(\eta+2)(\eta+1)^{-k}}{-(\eta+2)^{-k}+(\eta+1)^{-k}}\right]$$
(8c)

onde τ_2^{η} , τ_3^{η} , τ_4^{η} são, respectivamente, o coeficiente de variação LH, assimetria LH e curtose LH e $\Gamma(\bullet)$ a função gama. Para a análise da qualidade dos ajustes foi aplicado a teste de Kolmogorov-Smirnov, com significância de 5 %

Este procedimento foi aplicado a todas as séries de vazões mínimas de 1 e de 7 dias obtidas a partir dos dados de vazões médias diárias, observadas nas diversas estações fluviométricas descritas nas Tabelas 1 e 2,

utilizando a rotina em MATLAB para momentos LH proposta por Queiroz (2002). A partir dos ajustes da distribuição GEV às diversas séries de vazões mínimas de 1 e de 7 dias estimaram-se as vazões mínimas $Q_{1,10}$ e $Q_{7,10}$ (vazão mínima de 1 e de 7 dias de permanência, respectivamente, com 10 anos de recorrência), procedendo-se a comparação das mesmas através da razão $Q_{7,10}$ / $Q_{1,10}$, para cada estação fluviométrica.

RESULTADOS E DISCUSSÃO

Os parâmetros da distribuição GEV referentes aos ajustes das séries de vazões mínimas de 1 e de 7 dias para cada estação estudada estão apresentados nas Tabelas 3, 4 e 5, juntamente com os valores das taxas de momentos, teste probabilístico de Kolmogorov-Smirnov, bem como as estimativas de $Q_{1,10}$ e $Q_{7,10}$. As Figuras 2 a 7 apresentam as séries históricas de vazões mínimas anuais de 1 e de 7 dias e os gráficos de alguns ajustes da distribuição GEV para as referidas séries de vazões mínimas. Observando os dados das Tabelas 3, 4 e 5, verifica-se que todos os ajustes foram aceitos pelo teste de Kolmogorov-Smirnov, com 5% de significância. Observa-se também que o parâmetro de forma k apresenta 13,83% dos valores (13 séries) aproximadamente iguais a zero, ou seja, convergiram para a forma VEI da distribuição GEV que corresponde a distribuição Gumbel. 37,23% dos valores de k (35 séries) foram maiores que zero, convergindo, então, para a forma VEIII, e 48,94% séries) apresentaram-se menores que zero, convergindo para a forma assintótica VEII. Essa forma assintótica é similar à distribuição Weibull, que é muito utilizada para ajuste de vazões mínimas.

Além disso, 78,72% das séries foram ajustadas adequadamente através dos momentos LH_0 , 14,89% foram ajustadas através dos momentos LH_1 , 4,26% com os

momentos LH₂ e apenas 2,13% através dos momentos LH₃. Os momentos LH₀ correspondem aos momentos de combinação lineares das estatísticas (momentos L), os quais dão o mesmo peso para todos os dados da série durante o processo de ajuste. Essa maior quantidade de séries ajustadas através dos momentos LH₀ indica que momentos L são suficientes para ajustar a distribuição GEV às séries de vazões mínimas. Isto é importante porque simplificam os procedimentos matemáticos e computacionais nas rotinas de estimação dos parâmetros da distribuição GEV.

As Tabelas 3, 4 e 5 apresentam também a comparação dos resultados estimados para $Q_{1,10}$ e $Q_{7,10}$, em que apenas em uma estação (82170000) a relação entre $Q_{7,10}$ e $Q_{1,10}$ foi menor que 1. Além disso, percebe-se que a proporcionalidade entre a vazão de 1 e a de 7 dias estimadas é de até 10% para 53,19% das estações. Na estação de número 65985000 essa proporcionalidade apresenta uma variação de 74,2%. Isto indica que as vazões $Q_{1,10}$ são mais restritivas do que as vazões $Q_{7,10}$ que do ponto de vista ecológico são mais interessantes para serem adotadas como vazão de referência, pois proporciona maior proteção ao ambiente aquático. Tais constatações são observadas através das Figuras 2 a 7, em que as séries históricas e os quantis da Q_7 são superiores ou, no mínimo, iguais aos quantis da Q₁ em todas as estações estudadas com exceção da estação 82170000.

Tabela 3 - Valores estimados dos parâmetros e das taxas de momento LH da distribuição GEV, bem como valores do teste de Kolmogorov-Smirnov e das vazões mínimas de 1 e de 7 dias para 10 anos de período de retorno da Sub-bacia 65

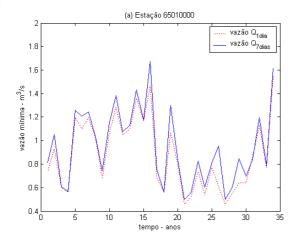
Código da Estação n Fluviométrica		Parâmetros da Distribuição GEV			M	Taxas de Momentos LH			Teste de Kolmogorov- Smirnov		Q ₁₀ (m ³ /s)	Q ₇ /Q ₁	
Fiuviometrica			k	α	и	cv	са	сс		Amostra	Crítico	, ,	
65010000	34	Q_1	0,258	0,339	0,735	0,140	0,125	0,030	1	0,118	0,233	0,420	1,329
	51	\mathbf{Q}_7	0,089	0,289	0,808	0,195	0,113	0,044	0	0,088	0,233	0,558	1,327
65011400	17	Q_1	0,030	0,197	0,533	0,207	0,226	0,102	0	0,118	0,320	0,366	1,273
03011400	17	Q_7	-0,088	0,173	0,605	0,182	0,226	0,240	0	0,118	0,320	0,466	1,273
65015400	17	Q_1	-0,252	0,251	1,218	0,140	0,378	0,376	1	0,118	0,320	1,029	1,092
03013400	1/	Q_7	-0,238	0,308	1,357	0,147	0,378	0,357	1	0,118	0,320	1,124	1,092
65019700	19	Q_1	0,172	0,756	1,731	0,145	0,222	0,214	1	0,158	0,300	1,052	1,262
03019700	19	\mathbf{Q}_7	0,027	0,654	1,880	0,198	0,151	0,137	0	0,211	0,300	1,328	1,202
65025000	19	Q_1	-0,207	3,670	6,360	0,341	0,328	0,149	0	0,105	0,300	3,549	1,408
03023000	19	\mathbf{Q}_7	-0,235	3,509	7,655	0,297	0,328	0,201	0	0,053	0,300	4,997	1,406
65035000	63	Q_1	-0,132	4,789	12,110	0,245	0,287	0,245	0	0,064	0,205	8,329	1,228
03033000	03	Q_7	-0,251	3,956	13,202	0,181	0,386	0,258	1	0,048	0,205	10,225	
(50(0000	64	Q_1	0,007	6,425	19,284	0,193	0,151	0,171	0	0,063	0,204	13,910	1,058
65060000	04	Q_7	0,027	6,702	20,370	0,188	0,151	0,185	0	0,125	0,204	14,717	1,058
(5000000	29 -	Q_1	-0,154	1,561	6,217	0,140	0,248	0,175	1	0,069	0,243	4,995	1,027
65090000		Q_7	0,034	1,866	6,710	0,163	0,147	0,173	0	0,069	0,243	5,131	
65100000	66 -	Q_1	-0,097	4,780	17,234	0,140	0,241	0,234	1	0,061	0,201	13,403	1,055
03100000	00	Q_7	0,004	5,178	18,469	0,125	0,241	0,201	1	0,061	0,201	14,143	
(5125000	57	Q_1	-0,164	0,711	3,012	0,165	0,230	0,202	0	0,070	0,216	2,458	1.050
65135000	57	\mathbf{Q}_7	-0,094	0,822	3,263	0,164	0,230	0,159	0	0,053	0,216	2,603	1,059
(512(550)	10	Q_1	-0,101	2,747	5,661	0,279	0,212	0,118	0	0,111	0,310	3,464	1.106
65136550	18	\mathbf{Q}_7	-0,067	2,690	6,013	0,257	0,212	0,124	0	0,111	0,310	3,830	1,106
(5155000	<i>(</i> 7	Q_1	-0,025	3,290	9,776	0,117	0,295	0,188	3	0,060	0,199	7,060	1.021
65155000	67	\mathbf{Q}_7	0,014	3,516	10,159	0,124	0,265	0,172	2	0,060	0,199	7,210	1,021
652 00000	10	Q_1	-0,152	2,105	3,432	0,342	0,308	0,277	0	0,167	0,380	1,782	1 124
65200000	12	Q ₇	-0,207	2,221	3,723	0,348	0,308	0,308	0	0,167	0,380	2,021	1,134
6500 0000	22	Q_1	-0,110	25,325	73,788	0,215	0,231	0,244	0	0,125	0,236	53,608	4.00=
65220000	32	Q ₇	-0,096	25,262	79,048	0,200	0,231	0,276	0	0,125	0,236	58,803	1,097
(500 5000	10	Q ₁	0,153	0,685	1,411	0,159	0,162	0,123	1	0,111	0,310	0,802	1.555
65235000	18	Q ₇	0,135	0,645	1,817	0,190	0,085	0,113	0	0,111	0,310	1,247	1,555
CEO (2000		Q ₁	-0,084	26,829	85,957	0,195	0,201	0,238	0	0,088	0,198	64,343	1.05:
65310000	68 -	Q ₇	-0,050	29,116	91,601	0,193	0,201	0,231	0	0,088	0,198	67,819	1,054

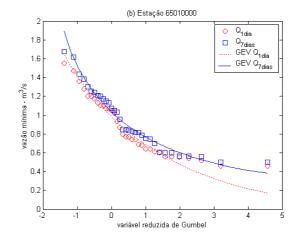
Tabela3 (continuação) - Valores estimados dos parâmetros e das taxas de momento LH da distribuição GEV, bem como valores do teste de Kolmogorov-Smirnov e das vazões mínimas de 1 e de 7 dias para 10 anos de período de retorno da Sub-bacia 65

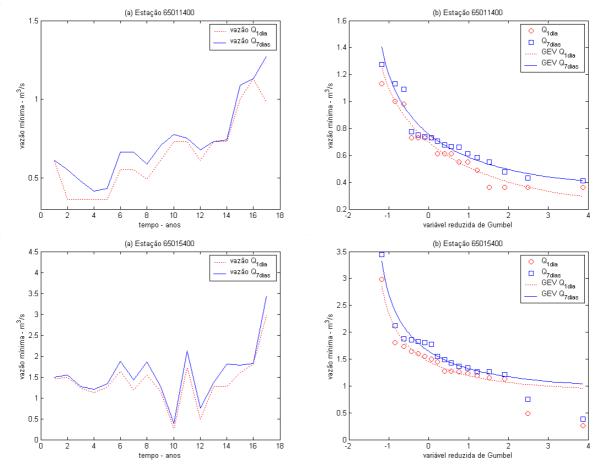
Código da Estação Fluviométrica	n		Parâmetros da Distribuição GEV			N	Taxas de Momentos LH			Teste de Kolmogorov- Smirnov		Q ₁₀ (m ³ /s)	Q ₇ /Q ₁
riuviometrica			k	α	и	cv	ca	сс		Amostra	Crítico		
65825000	49	Q_1	0,102	7,889	17,760	0,233	0,136	0,144	0	0,061	0,193	10,893	1,071
03823000	49	\mathbf{Q}_7	0,052	8,440	18,862	0,240	0,136	0,144	0	0,061	0,193	11,669	1,0/1
65890000	26	Q_1	-0,074	0,316	0,988	0,197	0,219	0,261	0	0,154	0,256	0,732	1.025
03890000	20	\mathbf{Q}_7	-0,077	0,325	1,020	0,197	0,219	0,249	0	0,154	0,256	0,758	1,035
65945000	40	Q_1	0,151	1,254	2,286	0,271	0,105	0,188	0	0,075	0,210	1,171	1,198
03943000	40	Q_7	0,102	1,319	2,552	0,263	0,105	0,198	0	0,075	0,210	1,403	1,196
65955000	41	Q_1	0,065	2,288	3,988	0,190	0,231	0,110	1	0,098	0,207	2,028	1,057
03933000		Q_7	0,043	2,545	4,305	0,163	0,251	0,165	2	0,098	0,207	2,143	
65970000	17	Q_l	0,528	0,470	0,832	0,260	0,010	-0,158	0	0,235	0,320	0,340	1,127
03770000		Q_7	0,267	0,577	0,922	0,291	0,010	-0,029	0	0,118	0,320	0,383	1,127
65979000	16	Q_l	0,063	2,753	5,141	0,275	0,106	0,155	0	0,063	0,330	2,783	1,108
03717000	10	Q_7	0,100	3,179	5,850	0,274	0,106	0,122	0	0,063	0,330	3,085	1,100
65981500	13	Q_l	0,258	1,506	2,130	0,322	0,036	0,030	0	0,077	0,360	0,729	1,177
03981300	13	Q_7	0,221	1,691	2,407	0,323	0,036	0,015	0	0,077	0,360	0,858	1,177
65985000	18	Q_l	0,173	106,255	228,202	0,235	0,279	0,056	0	0,167	0,310	132,870	1,742
03783000	10	Q_7	-0,257	77,003	289,314	0,169	0,390	0,230	1	0,056	0,310	231,510	1,742
65993000	53	Q_1	0,078	130,648	274,439	0,249	0,189	0,084	0	0,057	0,224	161,858	1,209
03993000	33	Q_7	-0,032	151,669	320,551	0,262	0,189	0,162	0	0,057	0,224	195,740	1,209

n - tamanho da amostra, k - parâmetro de forma, α - parâmetro de escala, u - parâmetro de posicionamento, cv - coeficiente de variação, ca - coeficiente de assimetria, cc - coeficiente de curtose, Q_1 - vazão mínima de 1 dia, Q_7 - vazão mínima de 7 dias

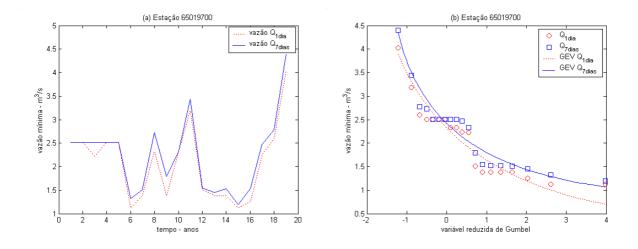
Tabela 4 - Valores estimados dos parâmetros e das taxas de momento LH da distribuição GEV, bem como valores do teste de Kolmogorov-Smirnov e das vazões mínimas de 1 e de 7 dias para 10 anos de período de retorno da Sub-bacia 82

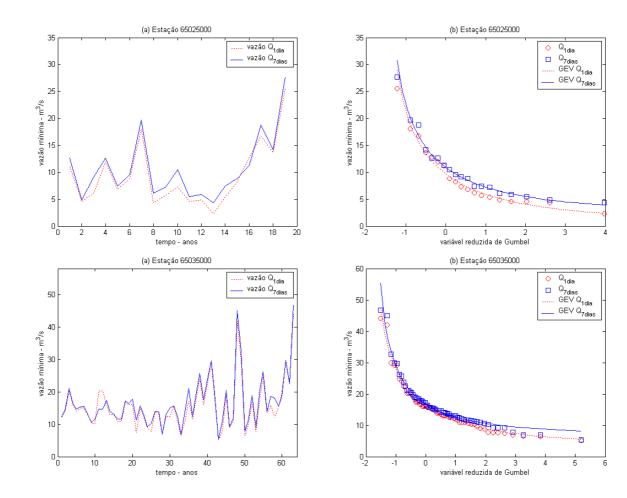

Código da Estação Fluviométrica	n			arâmetros tribuição C		M	Taxas de Iomentos I	Н	LH	Test Kolmo Smir	gorov-	Q ₁₀ (m ³ /s)	Q ₇ /Q ₁					
Travionietrica			k	α	и	cv	са	сс		Amostra	Crítico							
82009080	16	Q_1	0,053	0,534	2,295	0,137	0,144	0,168	0	0,125	0,330	1,840	1,045					
62009080	10	Q_7	0,038	0,519	2,363	0,132	0,144	0,176	0	0,188	0,330	1,924	1,043					
82111000	20	Q_1	0,107	1,347	4,329	0,172	0,060	0,064	0	0,050	0,290	3,154	1,100					
82111000		Q_7	0,179	1,536	4,852	0,168	0,060	0,051	0	0,050	0,290	3,470	1,100					
82121000	21	Q_1	0,038	1,570	6,346	0,146	0,139	0,111	0	0,095	0,282	5,016	1,048					
62121000	21	\mathbf{Q}_7	0,046	1,652	6,661	0,146	0,139	0,067	0	0,095	0,282	5,256						
82170000	60	60	60	60	60	60	Q_1	0,081	0,731	3,220	0,084	0,229	0,186	2	0,083	0,210	2,589	0,974
82170000	00	Q_7	0,306	1,002	3,473	0,147	-0,011	0,164	0	0,083	0,210	2,521	0,974					
82195000	10	Q_1	-0,004	0,207	0,981	0,131	0,220	0,321	0	0,167	0,310	0,809	1,028					
82193000	18	18	18	18	18	18	Q_7	-0,080	0,239	1,025	0,152	0,220	0,233	0	0,111	0,310	0,832	1,020


n - tamanho da amostra, k - parâmetro de forma, α - parâmetro de escala, u - parâmetro de posicionamento, cv - coeficiente de variação, ca - coeficiente de assimetria, cc - coeficiente de curtose, Q_1 - vazão mínima de 1 dia, Q_7 - vazão mínima de 7 dias


Tabela 5 - Valores estimados dos parâmetros e das taxas de momento LH da distribuição GEV, bem como valores do teste de Kolmogorov-Smirnov e das vazões mínimas de 1 e de 7 dias para 10 anos de período de retorno da Sub-bacia 81

Código da Estação	n			râmetros ribuição (М	Taxas de Iomentos I		LH	Testo Kolmoş Smir	gorov-	Q ₁₀ (m ³ /s)	Q ₇ /Q ₁
Fluviométrica			k	α	и	cv	ca	сс		Amostra	Crítico	` /	
81019350	15 -	Q_1	0,206	1,807	3,570	0,108	0,333	0,224	3	0,067	0,340	1,926	1,228
01017550	13	Q_7	0,028	1,769	3,857	0,248	0,151	0,127	0	0,067	0,340	2,365	1,220
81102000	18 -	Q_1	-0,174	2,613	11,600	0,160	0,241	0,246	0	0,111	0,310	9,572	1,035
01102000	10	Q_7	-0,111	2,883	12,202	0,158	0,241	0,233	0	0,111	0,310	9,906	1,033
81107000	16 -	Q_1	0,091	7,171	24,494	0,164	0,143	0,119	0	0,188	0,330	18,280	1,192
01107000	10	\mathbf{Q}_7	-0,084	5,240	26,012	0,099	0,315	0,199	2	0,125	0,330	21,792	1,172
81120000	15 -	Q_1	-0,198	0,703	3,102	0,165	0,361	0,345	0	0,200	0,340	2,562	1,035
01120000	15	\mathbf{Q}_7	-0,280	0,644	3,130	0,167	0,361	0,401	0	0,200	0,340	2,652	
81125000	51 -	Q_1	-0,153	0,768	3,534	0,126	0,292	0,240	1	0,078	0,228	2,932	1,032
01125000		\mathbf{Q}_7	-0,103	0,808	3,671	0,147	0,236	0,171	0	0,078	0,228	3,025	
81135000	64 -	Q_1	-0,013	8,666	30,977	0,169	0,189	0,122	0	0,078	0,204	23,789	1,019
01155000		\mathbf{Q}_7	-0,032	8,770	31,468	0,170	0,189	0,134	0	0,063	0,204	24,251	1,019
81140000	50 -	Q_1	0,076	0,485	2,251	0,094	0,212	0,116	1	0,060	0,190	1,833	1,048
01140000		\mathbf{Q}_7	0,019	0,480	2,325	0,126	0,156	0,119	0	0,060	0,190	1,922	1,046
81200000	60 -	Q_1	-0,029	13,580	48,374	0,171	0,214	0,177	0	0,050	0,210	37,183	1,046
01200000	00 -	\mathbf{Q}_7	-0,071	12,752	49,222	0,165	0,214	0,195	0	0,067	0,210	38,893	1,040
81210000	10 -	Q_1	-0,080	0,379	1,433	0,169	0,199	0,230	0	0,200	0,410	1,128	1,209
01210000	10	\mathbf{Q}_7	-0,048	0,340	1,641	0,133	0,199	0,236	0	0,100	0,410	1,363	1,207
81299000	12 -	Q_1	0,326	1,284	3,939	0,164	-0,004	0,102	0	0,083	0,380	2,708	1,164
01299000	12 -	\mathbf{Q}_7	0,291	1,333	4,412	0,154	-0,004	0,174	0	0,083	0,380	3,153	1,104
81300000	38 -	Q_1	0,325	1,212	6,370	0,066	0,127	0,083	1	0,105	0,218	5,209	1,074
81300000	30	\mathbf{Q}_7	0,213	1,208	6,697	0,099	0,040	0,109	0	0,053	0,218	5,595	1,0/4
81335000	17 -	Q_1	-0,174	4,025	18,330	0,157	0,344	0,312	0	0,118	0,320	15,205	1,065
81335000	1/	\mathbf{Q}_7	-0,256	4,022	19,217	0,165	0,344	0,342	0	0,118	0,320	16,197	1,005


n - tamanho da amostra, k - parâmetro de forma, α - parâmetro de escala, u - parâmetro de posicionamento, cv - coeficiente de variação, ca - coeficiente de assimetria, cc - coeficiente de curtose, Q_1 - vazão mínima de 1 dia, Q_7 - vazão mínima de 7 dias



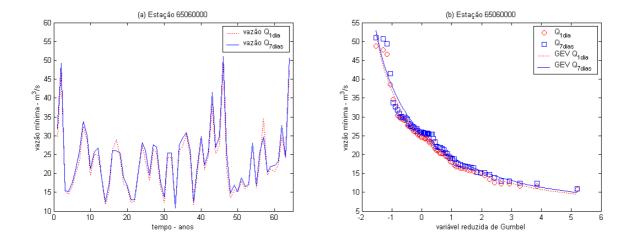
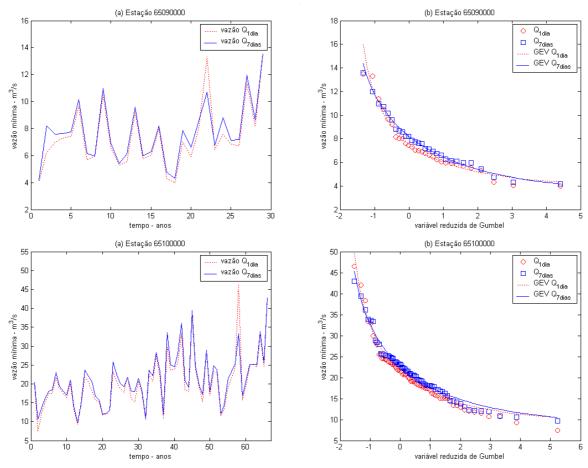
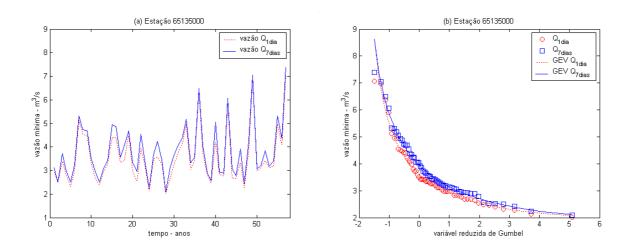
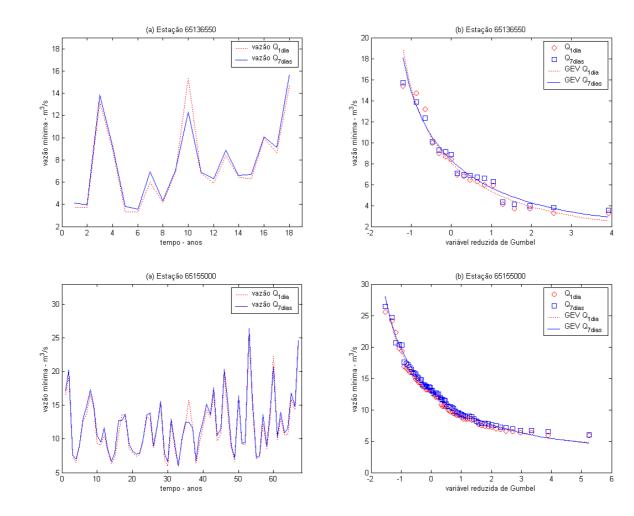


Figura 2 – (a) Séries históricas e (b) ajustes da distribuição GEV para as séries de vazões mínimas de 1 e de 7 dias de período de retorno da Sub-bacia 65, Estações 65010000, 65011400 e 65015400.




Figura 3 – (a) Séries históricas e (b) ajustes da distribuição GEV para as séries de vazões mínimas de 1 e de 7 dias de período de retorno da Sub-bacia 65, Estações 65019700, 65025000 e 65035000.



Revista Verde (Mossoró – RN – Brasil) v.5, n.3, p. 32 - 46 julho/setembro de 2010 http://revista.gvaa.com.br

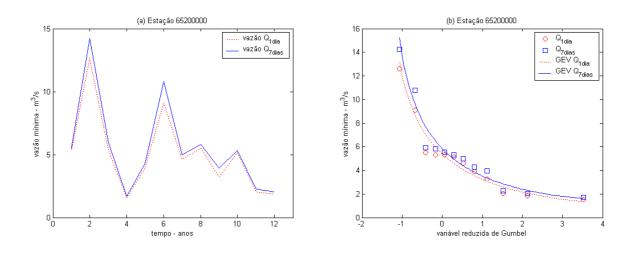
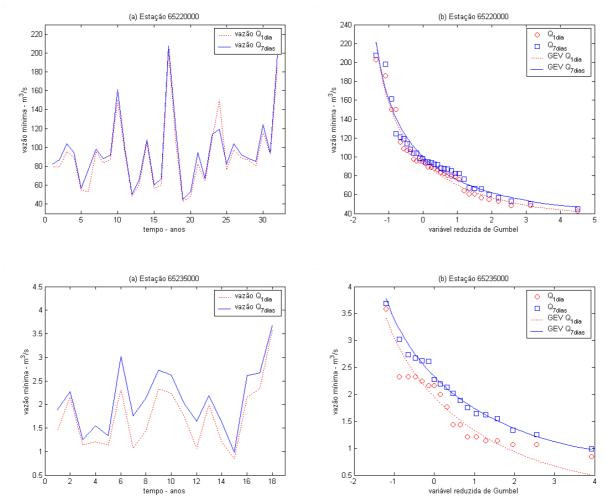
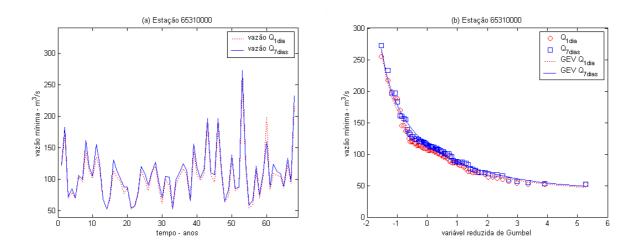
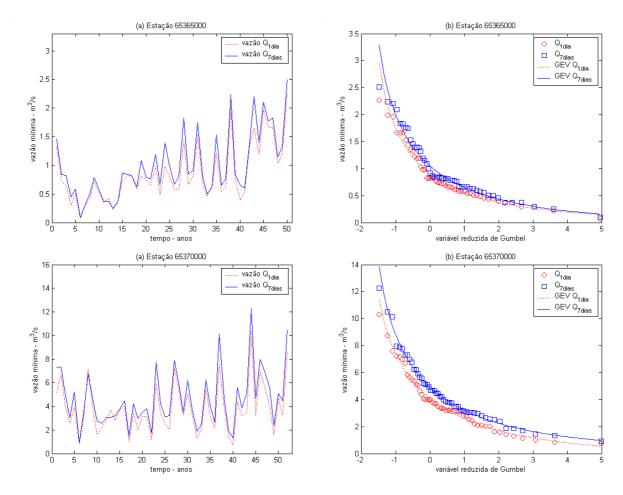


Figura 4 – (a) Séries históricas e (b) ajustes da distribuição GEV para as séries de vazões mínimas de 1 e de 7 dias de período de retorno da Sub-bacia 65, Estações 65060000, 65090000 e 65100000.




Figura 5 – (a) Séries históricas e (b) ajustes da distribuição GEV para as séries de vazões mínimas de 1 e de 7 dias de período de retorno da Sub-bacia 65, Estações 65135000, 65136550 e 65155000.



Revista Verde (Mossoró – RN – Brasil) v.5, n.3, p. 32 - 46 julho/setembro de 2010 http://revista.gvaa.com.br

Figura 6 – (a) Séries históricas e (b) ajustes da distribuição GEV para as séries de vazões mínimas de 1 e de 7 dias de período de retorno da Sub-bacia 65, Estações 65200000, 65220000 e 65235000.

Figura 7 – (a) Séries históricas e (b) ajustes da distribuição GEV para as séries de vazões mínimas de 1 e de 7 dias de período de retorno da Sub-bacia 65, Estações 65310000, 65365000 e 65370000.

CONCLUSÕES

Foram analisadas e ajustadas as séries históricas de 47 estações fluviométricas. A distribuição GEV ajustou adequadamente as séries de vazões mínimas de 1 e de 7 dias, com 5% de significância, conforme o teste de Kolmogorov-Smirnov. Aproximadamente metade das séries analisadas convergiram para a forma VEII da distribuição GEV que corresponde a distribuição de Weibull. Os melhores ajustes ocorreram para LH₀. Esses resultados demonstram, como esperado, que a distribuição GEV pode ser utilizada para ajuste de séries mínimas de vazões e que momentos L são suficientes para ajustar essas séries à referida distribuição.

 $A\ vazão\ Q_{1,10}\ \ mostrou-se\ mais\ restritiva\ do que\ a\ vazão\ Q_{7,10}, indicando\ que\ como\ vazão\ de\ referência oferece maior proteção aos ambientes aquáticos.$

REFERÊNCIAS BIBLIOGRÁFICAS

FISHER, R. A.; TIPPET, L. H. C. *Limiting forms of the frequency distribution of the largest or smallest member of a sample*. Proceedings of the Cambridge Philosophical Society, v.24, 1928. 180-190p.

GUMBEL, E. J. *Statistics of Extreme*. Columbia University Press, New York, 1958. 396p.

JENKINSON, A. F. *The frequency distribution of the annual maximum (or minimum) of meteorological elements.* Quarterly Journal of the Royal Meteorological Society, v.81, 1955. 158-171p.

LANNA, A. E.; COBALCHINI, M. S. *Metodologia para Determinação de vazões Ecológicas em Rios*. In: RBRH – Revista Brasileira de Recursos Hídricos, V. 8, n.2, p.149-190, 2003.

QUEIROZ, M. M. F. de (2002). **Análise de cheias anuais segundo distribuição de probabilidade generalizada**. EESC/USP, 230p (Tese de Doutorado) .

QUEIROZ, M.M.F de; CHAUDHRY (2003). Ajuste de vazões via distribuição GEV e momentos LH em matlab. In: XV Simpósio Brasileiro de Recursos Hídricos, Associação Brasileira de Recursos Hídricos (ABRH), 2003, Curitiba-Pr, Anais...

Recebido em 23/01/2010 Publicado em 31/03/2010 WANG, Q. J. Using higher probability weight moments for flood frequency analysis. J. of Hydrology, v.194, 1997a. 95-106p.

WANG, Q. J. **LH moments for statistical analysis of extreme events**. Water Resource Res., v.33, n.12, 1997b. 2841-2848p..