Volatile organic compounds induced by simulated herbivory in sugarcane plants

Authors

  • Demetrios José Albuquerque Oliveira Universidade Federal de Alagoas, Maceió
  • Thyago Fernado Lisboa Ribeiro Universidade Federal de Alagoas, Maceió
  • Karlos Antônio Lisboa Ribeiro Junior Universidade Federal de Alagoas, Maceió
  • João Gomes da Costa Embrapa Alimentos e Territórios, Maceió
  • Jaim Simões de Oliveira Universidade Tiradentes, Maceió
  • Henrique Fonseca Goulart Universidade Federal de Alagoas, Maceió

DOI:

https://doi.org/10.18378/rvads.v15i4.8034

Keywords:

Saccharum officinarum, Diatrea saccharalis, (Z)-jasmone, Indirect plant defense

Abstract

Sugarcane is a crop of great importance for agriculture and the Brazilian economy. This crop can be attacked by several pests that cause severe economic damage in terms of productivity. This work aimed to investigate the volatile compounds released by sugarcane plants submitted to two treatments of simulated herbivory. In the Single Simulated Herbivory (SSH), the plant is mechanically damaged only once, however in the Double Simulated Herbivory (DSH), the plants are mechanically damaged twice. The experiments were evaluated at three different times (24, 48, and 72 hours). The plants presented different profiles of VOCs when submitted to the treatments. The (Z)-jasmone and sulcatone were emitted in greater quantity by the plants of the HSD treatment after 24 and 48 hours of induction, and 48 hours after the induction this compound showed a significant difference to the quantity emitted by the plants of the HSU treatment. These findings indicate that plants can implement defenses against herbivore attacks, by emitting compounds that repel insects and attract parasitoids and or predators.

Downloads

Download data is not yet available.

Author Biographies

Demetrios José Albuquerque Oliveira, Universidade Federal de Alagoas, Maceió

 Instituto de Química e Biotecnologia;

Química e Biotecnologia


Thyago Fernado Lisboa Ribeiro, Universidade Federal de Alagoas, Maceió

 Instituto de Química e Biotecnologia;

Química e Biotecnologia

Karlos Antônio Lisboa Ribeiro Junior, Universidade Federal de Alagoas, Maceió

 Instituto de Química e Biotecnologia;

Química e Biotecnologia

João Gomes da Costa, Embrapa Alimentos e Territórios, Maceió

 Embrapa Tabuleiros Costeiros - CPATC;

Agronomia 

Jaim Simões de Oliveira, Universidade Tiradentes, Maceió

Centro Universitário Tiradentes;

Medicina

Henrique Fonseca Goulart, Universidade Federal de Alagoas, Maceió

Centro de Ciências Agrárias 

Agronomia 

References

ALJBORY, Z.; CHEN, M.-S. Indirect plant defense against insect herbivores: A review. Insect Science. 25(1), 2–23, 2018. 10.1111/1744-7917.12436

ATAIDE, L. M. S.; PAPPAS, M. L.; SCHIMMEL, B. C. J.; LOPEZ-ORENES, A.; ALBA, J. M.; DUARTE, M. V. A.; PALLINI, A.; SCHUURINK, R. C.; KANT, M. R. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Science. 252:300–310, 2016. 10.1016/j.plantsci.2016.08.004.

BIRKETT, M. A.; CAMPBELL, C. A. M.; CHAMBERLAIN, K.; GUERRIERI, E.; HICK, A. J.; MARTIN, J. L.; MATTHES, M.; NAPIER, J. A.; PETTERSSON, J.; PICKETT, J. A.; POPPY, G. M.; POW, E. M.; PYE, B. J.; SMART, L. E.; WADHAMS, G. H.; WADHAMS, L. J.; WOODCOCK, C. M. New Roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences. Sci., 97(16), 9329–9334, 2000. https://doi.org/10.1073/pnas.160241697.

BRUCE, T. J.; MARTIN, J. L.; PICKETT, J. A.; PYE, B. J.; SMART, L. E.; WADHAMS, L. J. cis-jasmone treatment induces resistance in wheat plants against the Grain aphid, Sitobion Avenae (Fabricius) (Homoptera: Aphididae). Pest Management Science. 59(9):1031–1036, 2003. 10.1002/ps.730

.

CONAB, Companhia Nacional de Abastecimento. Conab Safras, 2018. Disponível: <https://www.conab.gov.br/info-agro/safras/cana> Acessado em: 28 Feb. 2020.

CONRATH, U.; BECKERS, G. J. M.; FLORS, V.; GARCÍA-AGUSTÍN, P.; JAKAB, G.; MAUCH, F.; NEWMAN, M.-A.; PIETERSE, C. M. J.; POINSSOT, B.; POZO, M. J.; PUGIN, A.; SCHAFFRATH, U.; TON, J.; WENDEHENNE, D.; ZIMMERLI, L.; MAUCH-MANI, B. Priming: getting ready for battle. Mol. Molecular Plant-Microbe Interactions. 19(10):1062–1071, 2006. 10.1094/MPMI-19-1062.

CONRATH, U. Chapter 9 Priming of induced plant defense responses. In: JEAN, C. K.; MICHEL D (eds.). Advances in Botanical Research. Academic Press, 2009, p 361–395.

CHEN, M. Inducible direct plant defense against insect herbivores: A review. Insect Science. 15(2):101–114, 2008. 10.1111/j.1744-7917.2008.00190.x.

CRISTOFOLETTI, P. T.; KEMPER, E. L.; CAPELLA, A. N.; CARMAGO, S. R.; CAZOTO, J. L.; FERRARI, F.; GALVAN, T. L.; GAUER, L.; MONGE, G. A.; NISHIKAWA, M. A.; SANTOS, N. Z.; SEMEAO, A. A.; SILVA, L.; WILLSE, A. R.; ZANCA, A.; EDGERTON, M. D. Development of transgenic sugarcane resistant to sugarcane borer. Tropical Plant Biology. 11(1–2):17–30, 2018. 10.1007/s12042-018-9198-y.

CRUZ, C. D. Genes - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy. (3):271–276, 2013. 10.4025/actasciagron.v35i3.21251.

DĄBROWSKA, P.; BOLAND, W. Iso-OPDA: An early precursor of cis-jasmone in plants? ChemBioChem. 8(18):2281–2285, 2007. 10.1002/cbic.200700464.

DICKE, M.; BALDWIN, I. T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’. Trends in Plant Science. 15(3):167–175, 2010. 10.1016/j.tplants.2009.12.002.32

FERREIRA, C. A. DA S.; SANTANA, M. V.; SANTOS, J. B. DOS; SANTOS, T. T. M. DOS; LÔBO, L. M.; FERNANDES, P. M. Yield and technological quality of sugarcane cultivars under infestation of Diatraea saccharalis (Fabr., 1794). Arquivos do Instituto Biológico. 85:1-7, 2018. https://doi.org/10.1590/1808-1657000042017.35

FROST, C. J.; MESCHER, M. C.; CARLSON, J. E.; DE MORAES, C. M. Plant defense priming against herbivores: getting ready for different battle. Plant Physiology. 146(3):818–824, 2008. 10.1104/pp.107.113027.37

GRUBER, M. Y.; XU, N.; GRENKOW, L.; LI, X.; ONYILAGHA, J.; SOROKA, J. J.; WESTCOTT, N. D.; HEGEDUS, D. D. Responses of the Crucifer flea Beetle to Brassica volatiles in an olfactometer. Environmental Entomology. 38(5):1467–1479, 2009. 10.1603/022.038.0515.

HIRAO, T.; OKAZAWA, A.; HARADA, K.; KOBAYASHI, A.; MURANAKA, T.; HIRATA, K. Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. Journal of Bioscience and Bioengineering. 114(5):540–545, 2012. 10.1016/j.jbiosc.2012.06.010.

HILKER, M.; SCHWACHTJE, J.; BAIER, M.; BALAZADEH, S.; BÄURLE, I.; GEISELHARDT, S.; HINCHA, D. K.; KUNZE, R.; MUELLER-ROEBER, B.; RILLIG, M. C.; ROLFF, J.; ROMEIS, T.; SCHMÜLLING, T.; STEPPUHN, A.; VAN DONGEN, J.; WHITCOMB, S. J.; WURST, S.; ZUTHER, E.; KOPKA, J. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews. 91(4):1118–1133, 2016. 10.1111/brv.12215.

JADOSKI, C. J.; BRAGANTI, E. V.; JULIANETTI, A.; HULSHOF, T.; ONO, E. O. Fisiologia do desenvolvimento do estádio vegetativo da cana-de-açúcar (Saccharum officinarum L.). Brazilian Journal of Applied Technology for Agricultural Science. 3:169–176. 2010.

JAKOBSEN, H. B.; FRIIS, P.; NIELSEN, J. K.; OLSEN, C. E. Emission of volatiles from flowers and leaves of Brassica Napus in situ. Phytochemistry. 37 (3):695–699, 1994. 10.1016/S0031-9422(00)90341-8.

KIGATHI, R. N.; UNSICKER, S. B.; REICHELT, M.; KESSELMEIER, J.; GERSHENZON, J.; WEISSER, W. W. Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. Journal of Chemical Ecology. 35(11):1335–1348, 2009. 10.1007/s10886-009-9716-3.

KIM, J.; QUAGHEBEUR, H.; FELTON, G. W. Reiterative and interruptive signaling in induced plant resistance to chewing insects. Phytochemistry. 72(13):1624–1634, 2011. 10.1016/j.phytochem.2011.03.026.

KORTBEEK, R. W. J.; VAN DER GRAGT, M.; BLEEKER, P. M. Endogenous Plant Metabolites against Insects. European Journal of Plant Pathology. 154(1):67–90, 2019. 10.1007/s10658-018-1540-6.

LOUGHRIN, J. H.; MANUKIAN, A.; HEATH, R. R.; TUMLINSON, J. H. Volatiles emitted by different cotton varieties damaged by feeding Beet armyworm Larvae. Journal of Chemical Ecology. 21(8):1217–1227, 1995. 10.1007/BF02228321.

MARTINS, C. B. C.; ZARBIN, P. H. G. Volatile organic compounds of conspecific-damaged eucalyptus benthamii influence responses of mated females of Thaumastocoris peregrinus. Journal of Chemical Ecology. 39(5):602–611, 2013. 10.1007/s10886-013-0287-y.

MATSUI, R.; AMANO, N.; TAKAHASHI, K.; TAGUCHI, Y.; SABURI, W.; MORI, H.; KONDO, N.; MATSUDA, K.; MATSUURA, H. Elucidation of the biosynthetic pathway of cis-jasmone in Lasiodiplodia theobromae. Scientific Reports. 7(1):6688, 2017. 10.1038/s41598-017-05851-7

MATTHES, M. C.; BRUCE, T. J. A.; TON, J.; VERRIER, P. J.; PICKETT, J. A.; NAPIER, J. A. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta. 232(5):1163–1180, 2010. 10.1007/s00425-010-1244-4.

LOU, Y.; BALDWIN, I. T. Manduca sexta recognition and resistance among allopolyploid nicotiana host plants. Proceedings of the National Academy of Sciences., 100(Supplement 2):14581–14586, 2003. 10.1073/pnas.2135348100.

NÁVAROVÁ, H.; BERNSDORFF, F.; DÖRING, A.-C.; ZEIER, J. Pipecolic acid, an endogenous mediator of defense amplification and priming, Is a critical regulator of inducible plant immunity. The Plant Cell. 24(12):5123–5141, 2012. 10.1105/tpc.112.103564.

NICOLA, M. V. Broca gigante da cana-de-açúcar, Telchin licus licus (Drury, 1773) na região Centro-Sul: Preocupação para os produtores. Nucleus. Ed (Esp):49–54, 2008. 10.3738/1982.2278.90.

OLIVEIRA, C. M.; AUAD, A. M.; MENDES, S. M.; FRIZZAS, M. R. Crop losses and the economic impact of insect pests on brazilian agriculture. Crop Protection. 56:50–54, 2014. 10.1016/j.cropro.2013.10.022.

PAUDEL, S.; LIN, P.-A.; FOOLAD, M. R.; ALI, J. G.; RAJOTTE, E. G.; FELTON, G. W. Induced plant defenses against herbivory in cultivated and wild tomato. Journal of Chemical Ecology. 45(8):693–707, 2019. 10.1007/s10886-019-01090-4.

PARE, P. W.; TUMLINSON, J. H. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology. 114 (4):1161–1167, 1997. 10.1104/pp.114.4.1161.

PAUDEL TIMILSENA, B.; SEIDL‐ADAMS, I.; TUMLINSON, J. H. Herbivore‐specific plant volatiles prime neighboring plants for nonspecific defense responses. Plant, Cell & Environment. 43(3):787–800, 2020. 10.1111/pce.13688.

PENG, J.; VAN LOON, J. J. A.; ZHENG, S.; DICKE, M. Herbivore-induced volatiles of Cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants. Plant Biology. 13(2):276–284, 2011. 10.1111/j.1438-858677.2010.00364.x .

PICKETT, J. A.; KHAN, Z. R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges. New Phytologist. 212(4):856–870, 2016. 10.1111/nph.14274.

RASMANN, S.; DE VOS, M.; CASTEEL, C. L.; TIAN, D.; HALITSCHKE, R.; SUN, J. Y.; AGRAWAL, A. A.; FELTON, G. W.; JANDER, G. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiology. 158 (2):854–863, 2012. 10.1104/pp.111.187831.

RASHID, M. H.-O.-; KHAN, A.; HOSSAIN, M. T.; CHUNG, Y. R. Induction of systemic resistance against aphids by endophytic bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis. Frontiers in Plant Science. 8:211, 2017. 10.3389/fpls.2017.00211.

RISTICEVIC, S.; SOUZA-SILVA, E. A.; GIONFRIDDO, E.; DEELL, J. R.; COCHRAN, J.; HOPKINS, W. S.; PAWLISZYN, J. Application of in vivo solid phase microextraction (spme) in capturing metabolome of apple (Malus domestica Borkh.) fruit. Scientific Reports. 10(1):6724, 2020. 10.1038/s41598-020-63817-8.

RÖSE, U. S. R.; TUMLINSON, J. H. Systemic induction of volatile release in cotton: How specific is the signal to herbivory? Planta. 222(2):327–335, 2005. 10.1007/s00425-005-1528-2.

RÖSE, U. S. R.; TUMLINSON, J. H. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta. 218(5):824–832, 2004. 10.1007/s00425-003-1162-9.

SHAO, Y.; GUO, M.; HE, X.; FAN, Q.; WANG, Z.; JIA, J.; GUO, J. Constitutive H2O2 is involved in sorghum defense against aphids. Brazilian Journal of Botany. 42(2):271–281, 2019. 10.1007/s40415-019-00525-2.

SMITH, L.; BECK, J. J. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds. Biocontrol Science and Technology. 23(8):880–907, 2013. 10.1080/09583157.2013.807908.

SMITH, L.; BECK, J. J. Duration of emission of volatile organic compounds from mechanically damaged plant leaves. Journal of Plant Physiology. 188:19–28, 2015. 10.1016/j.jplph.2015.08.003.

STEWART-JONES, A.; POPPY, G. M. Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. Journal of Chemical Ecology. 32(4):845–864, 2006. 10.1007/s10886-006-9039-6

TAMIRU, A.; KHAN, Z. R.; BRUCE, T. J. New directions for improving crop resistance to insects by breeding for egg induced defence. Current Opinion in Insect Science. 9:51–55, 2015. 10.1016/j.cois.2015.02.011.

TIKU, A. R. Antimicrobial compounds (Phytoanticipins and Phytoalexins) and their role in plant defense. In: MÉRILLON, J.M.; RAMAWAT, K. (eds) Co-Evolution of Secondary Metabolites. Springer, 2020, p 845–868.

WAR, A. R.; PAULRAJ, M. G.; AHMAD, T.; BUHROO, A. A.; HUSSAIN, B.; IGNACIMUTHU, S.; SHARMA, H. C. Mechanisms of plant defense against insect herbivores. Plant signaling & behavior. 7(10):1306–132, 2012. 10.4161/psb.21663.

WESTMAN, S. M.; KLOTH, K. J.; HANSON, J.; OHLSSON, A. B.; ALBRECTSEN, B. R. Defence priming in arabidopsis – a meta-analysis. Scientific Reports. 9(1):13309, 2019. 10.1038/s41598-019-49811-9.

YANG, F.; ZHANG, Q.; YAO, Q.; CHEN, G.; TONG, H.; ZHANG, J.; LI, C.; SU, Q.; ZHANG, Y. Direct and indirect plant defenses induced by (Z)-3-hexenol in tomato against whitefly attack. Journal of Pest Science. 93(4):1243–1254, 2020. 10.1007/s10340-020-01234-6.

Published

01-10-2020

How to Cite

OLIVEIRA, D. J. A.; RIBEIRO, T. F. L.; RIBEIRO JUNIOR, K. A. L.; COSTA, J. G. da; OLIVEIRA, J. S. de; GOULART, H. F. Volatile organic compounds induced by simulated herbivory in sugarcane plants. Revista Verde de Agroecologia e Desenvolvimento Sustentável, [S. l.], v. 15, n. 4, p. 404–411, 2020. DOI: 10.18378/rvads.v15i4.8034. Disponível em: https://www.gvaa.com.br/revista/index.php/RVADS/article/view/8034. Acesso em: 2 may. 2024.

Issue

Section

INTERDISCIPLINARY

Most read articles by the same author(s)