Factors that influence the stability of silver nanoparticles dispersed in propolis

Authors

DOI:

https://doi.org/10.18378/aab.v8i0.7805

Keywords:

Biotechnology, Nanoparticles, Nanotechnology, Spectrophotometer Ultraviolet-Visible.

Abstract

Propolis is a resinous material with a peculiar composition that stimulates several questions since ancient civilizations. These questions are related to the different properties of propolis, such as antioxidant, antimicrobial, antiviral, antimutagenic, anti-inflammatory, and healing activities. Thus, these properties present in propolis are being used in bio-nanotechnological products due, for example, to their high content of flavonoids and phenolic substances that act in synergy with the properties found in silver nanoparticles. In this article, different physical-chemical factors that can influence the stability of silver nanoparticles dispersed in propolis will be discussed. Characterizations by visible ultraviolet spectrophotometry define the security of the colloidal nanosystem.

Downloads

Download data is not yet available.

Author Biographies

Mayara Santana dos Santos, Universidade Federal do Rio de Janeiro, Rio de Janeiro

NUMPEX-Bio, Biotecnologia. Universidade Federal do Rio de Janeiro (UFRJ), Campus Duque de Caxias, Brasil.

Bianca Pizzorno Backx, Universidade Federal do Rio de Janeiro, Rio de Janeiro

NUMPEX-Bio, Universidade Federal do Rio de Janeiro (UFRJ), Campus Duque de Caxias, Brasil.

References

AHMED, R.; TANVIR, E. M.; HOSSEN, MD. S.; AFROZ, R.; AHMMED, I.; RUMPA, N.E.N.; PAUL, S.; GAN, S. H.; SULAIMAN, S. A.; KHALIL, M. D. I. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats. Evidence-Based Complementary and Alternative Medicine, v. 2017, p. 5370545, 2017. DOI: https://doi.org/10.1155/2017/5370545

ANJUM, S. I.; ULLAH, A.; KHAN, K. A.; ATTAULLAH, M.; KHAN, H.; ALI, H.; BASHIR, M. A.; TAHIR, M.; ANSARI, M. J.; GHRAMH, H. A.; ADGABA, N.; DASH, C. K. Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, v. 26, n. 7, p. 1695–1703, 2019. DOI: https://doi.org/10.1016/j.sjbs.2018.08.013

ANTUNES FILHO, S.; BACKX, B. P. Nanotecnologia e seus impactos na sociedade. Revista Tecnologia e Sociedade, v. 16, n. 40, p. 1–15, 2020. DOI: https://doi.org/10.3895/rts.v16n40.9870

ANTUNES FILHO, S.; SANTOS, O. A. L.; SANTOS, M. S.; BACKX, B. P. Exploiting Nanotechnology to Target Viruses. Journal of Nanotechnology and Nanomaterials, v. 1, n. 1, 2020.

BADAWY, A. M. E.; LUXTON, T. P.; SILVA, R. G.; SCHECKEL, K. G.; SUIDAN, M. T.; TOLAYMAT, T. M. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environmental Science & Technology, v. 44, n. 4, p. 1260–1266, 2010. DOI: https://doi.org/10.1021/es902240k

CAI, W.; XIAO, C.; QIAN, L.; CUI, S. Detecting van der Waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Research, v. 12, n. 1, p. 57–61, 2019. DOI: https://doi.org/10.1007/s12274-018-2176-8

CHAMBERLIN D.; HADLEY J.; LIU M.; TRUTNA R. Nanoparticle Measurement by Spectroscopic Mie Scattering. TechConnect Briefs, v. 1, n. 2008, p. 834–837, 2008.

DOS SANTOS, M.S.; BACKX, B. P. A própolis e a bionanotecnologia. A Interface do Conhecimento sobre Abelhas. Atena Editora, 2019. cap.1, p.1-12. DOI: https://doi.org/10.22533/at.ed.0621915101

DURÁN, N.; ROLIM, W. R.; DURÁN, M.; FÁVARO, W. J.; SEABRA, A. B. Nanotoxicology of silver nanoparticles: toxicity in aninals and humans. Química Nova, v. 42, n. 2, p. 206–213, 2019.

FUNARI, C. S.; FERRO, V. O. Análise de própolis. Food Science and Technology, v. 26, n. 1, p. 171–178, 2006. DOI: https://doi.org/10.1590/S0101-20612006000100028

JASUJA, N. D.; GUPTA, D. K.; REZA, M.; JOSHI, S. C. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities. Brazilian Journal of Microbiology, v. 45, n. 4, p. 1325–1332, 2014. DOI: https://doi.org/10.1590/S1517-83822014000400024

KANWAL, Z.; RAZA, M. A.; RIAZ, S.; MANZOOR, S.; TAYYEB, A.; SAJID, I.; NASEEM, S. Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. Royal Society Open Science, v. 6, n. 5, p. 182135, 2019. DOI: https://doi.org/10.1098/rsos.182135

LEE, S. H.; JUN, B. H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences, v. 20, n. 4, 2019. DOI: https://doi.org/10.3390/ijms20040865

LI, B.; FENG, Z.; HE, L.; LI, W.; WANG, Q.; LIU, J.; HUANG, J.; ZHENG, Y.; MA, Y.; YANG, X.; WANG, K. Self-Assembled Supramolecular Nanoparticles for Targeted Delivery and Combination Chemotherapy. ChemMedChem, v. 13, n. 19, p. 2037–2044, 2018. DOI: https://doi.org/10.1002/cmdc.201800291

LIAW, J. W.; TSAI, S. W.; LIN, H. H.; YEN, T. C.; CHEN, B. R. Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 113, n. 17, p. 2234–2242, 2012. DOI: https://doi.org/10.1016/j.jqsrt.2012.08.002

LINIC, S.; ASLAM, U.; BOERIGTER, C.; MORABITO, M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, v. 14, n. 6, p. 567–576, 2015. DOI: https://doi.org/10.1038/nmat4281

LUSTOSA, S. R.; GALINDO, A. B.; NUNES, L. C. C.; RANDAU, K. P.; ROLIM NETO, P. J. Propolis: updates on chemistry and pharmacology. Revista Brasileira de Farmacognosia, v. 18, n. 3, p. 447–454, 2008. DOI: https://doi.org/10.1590/S0102-695X2008000300020

MA, X.; ZARE, Y.; RHEE, K. Y. A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young’s Modulus of Polymer Nanocomposites. Nanoscale Research Letters, v. 12, n. 1, p. 621, 2017. DOI: https://doi.org/10.1186/s11671-017-2386-0

MARCUCCI, M. C.; FERRERES, F.; GARCÍA-VIGUERA, C.; BANKOVA, V. S.; DE CASTRO, S. L.; DANTAS, A. P.; VALENTE, P. H.; PAULINO, N. Phenolic compounds from Brazilian propolis with pharmacological activities. Journal of Ethnopharmacology, v. 74, n. 2, p. 105–112, 2001. DOI: https://doi.org/10.1016/S0378-8741(00)00326-3

MELO JR., M. A.; SANTOS, L. S. S.; GONÇALVES, M. do C.; NOGUEIRA, A. F. Preparation of silver and gold nanoparticles: a simple method to introduce nanotechnology into teaching laboratories. Química Nova, v. 35, n. 9, p. 1872–1878, 2012. DOI: https://doi.org/10.1590/S0100-40422012000900030

MOORE, T. L.; RODRIGUEZ-LORENZO, L.; HIRSCH, V.; BALOG, S.; URBAN, D.; JUD, C.; ROTHEN-RUTISHAUSER, B.; LATTUADA, M.; PETRI-FINK, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, v. 44, n. 17, p. 6287–6305, 2015. DOI: https://doi.org/10.1039/C4CS00487F

PARESQUE, M.; OLIVEIRA, E.; DE CASTRO, J. Influência do tempo de revestimento no tamanho e estabilidade de nanoparticulas de magnetita para tratamentos de hipertermia magnética. Tecnologia em Metalurgia Materiais e Mineração, v. 16, 2019. DOI: https://doi.org/10.4322/2176-1523.20191639

PEREIRA, A. S.; SEIXAS, F. R. M. S.; AQUINO NETO, F. R. De. Propolis: 100 years of research and future perspectives. Química Nova, v. 25, n. 2, p. 321–326, 2002. DOI: https://doi.org/10.1590/S0100-40422002000200021

PHU, D. V.; LANG, V. T. K.; LAN, N. T. K.; DUY, N. N.; CHAU, N. D.; DU, B. D.; CAM, B. D.; HIEN, N. Q. Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation. Journal of Experimental Nanoscience, v. 5, n. 2, p. 169–179, 2010. DOI: https://doi.org/10.1080/17458080903383324

POLTE, J.; TUAEV, X.; WUITHSCHICK, M.; FISCHER, A.; THUENEMANN, A. F.; RADEMANN, K.; KRAEHNERT, R.; EMMERLING, F. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano, v. 6, n. 7, p. 5791–5802, 2012. DOI: https://doi.org/10.1021/nn301724z

PRASAD, R. Synthesis of Silver Nanoparticles in Photosynthetic Plants. Journal of Nanoparticles, v. 2014, 2014. DOI: https://doi.org/10.1155/2014/963961

REDASANI, V. K.; PATEL, P. R.; MARATHE, D. Y.; CHAUDHARI, S. R.; SHIRKHEDKAR, A. A.; SURANA, S. J. A review on derivative uv-spectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review. Journal of the Chilean Chemical Society, v. 63, n. 3, p. 4126–4134, 2018. DOI: https://doi.org/10.4067/s0717-97072018000304126

REIMERS, J. R.; FORD, M. J.; MARCUCCIO, S. M.; ULSTRUP, J.; HUSH, N. S. Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nature Reviews Chemistry, v. 1, n. 2, p. 1–13, 2017. DOI: https://doi.org/10.1038/s41570-017-0017

ROCHA, F. R. P.; TEIXEIRA, L. S. G. Strategies to increase sensitivity in UV-VIS spectrophotometry. Química Nova, v. 27, n. 5, p. 807–812, 2004. DOI: https://doi.org/10.1590/S0100-40422004000500021

RODRIGUES, J. F. B.; BRANDÃO, P. E. de S.; GUIMARÃES, P. Q.; PINTO, M. R. de O.; WELLEN, R. M. R.; FOOK, M. V. L. Aplicação de método estatístico no estudo da influência do peróxido de hidrogênio e do borohidreto de sódio na síntese de nanopartículas de prata (AGNPS). Matéria (Rio de Janeiro), v. 24, n. 3, 2019. DOI: https://doi.org/10.1590/s1517-707620190003.0708

SANTOS, J. F. L.; SANTOS, M. J. L.; THESING, A.; TAVARES, F.; GRIEP, J.; RODRIGUES, M. R. F. Ressonância de plasmon de superfície localizado e aplicação em biossensores e células solares. Química Nova, v. 39, n. 9, p. 1098–1111, 2016. DOI: https://doi.org/10.21577/0100-4042.20160126

SANTOS, M.; SANTOS, O.; FILHO, S.; SANTANA, J.; SOUZA, F.; BACKX, B. Can Green Synthesis of Nanoparticles be Efficient all Year Long? Nanomaterial Chemistry and Technology, v.1, p. 32–36, 2019. DOI: https://doi.org/10.33805/2690-2575.110

SFORCIN, J. M. Biological Properties and Therapeutic Applications of Propolis. Phytotherapy research: PTR, v. 30, n. 6, p. 894–905, 2016. DOI: https://doi.org/10.1002/ptr.5605

SHARMA, R. K.; GULATI, S.; MEHTA, S. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment. Journal of Chemical Education, v. 89, n. 10, p. 1316–1318, 2012. DOI: https://doi.org/10.1021/ed2002175

WANG, X.; QIN, M.; FANG, F.; JIA, B.; WU, H.; QU, X.; VOLINSKY, A. A. Effect of glycine on one-step solution combustion synthesis of magnetite nanoparticles. Journal of Alloys and Compounds, v. 719, p. 288–295, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.05.187

YANG, H.; WANG, Y.; CHEN, X.; ZHAO, X.; GU, L.; HUANG, H.; YAN, J.; XU, C.; LI, G.; WU, J.; EDWARDS, A. J.; DITTRICH, B.; TANG, Z.; WANG, D.; LEHTOVAARA, L.; HÄKKINEN, H.; ZHENG, N. Plasmonic twinned silver nanoparticles with molecular precision. Nature Communications, v. 7, n. 1, p. 12809, 2016. DOI: https://doi.org/10.1038/ncomms12809

ZHANG, X.-F.; LIU, Z.-G.; SHEN, W.; GURUNATHAN, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, v. 17, p. 1534, 2016. DOI: https://doi.org/10.3390/ijms17091534

Fatores que influenciam a estabilidade das nanopartículas de prata dispersas em própolis

Published

2020-09-16

How to Cite

SANTOS, M. S. dos; BACKX, B. P. Factors that influence the stability of silver nanoparticles dispersed in propolis. ACTA Apicola Brasilica, [S. l.], v. 8, p. e7805, 2020. DOI: 10.18378/aab.v8i0.7805. Disponível em: https://www.gvaa.com.br/revista/index.php/APB/article/view/7805. Acesso em: 29 mar. 2024.

Issue

Section

Biotechnology