Larva of Rhynchophorus palmarum L. (Coleoptera: Curculionidae): Effect of diet on the synthesis of essential fatty acids

Keywords: Exotic foods, Oviposition, Larviculture, Edible larvae, Lipids


Insects are an important source of proteins, vitamins, amino acids, minerals, and lipids. In this context, the present study evaluated the essential fatty acid profile of the larval oil of Rhynchophorus palmarum (Coleoptera: Curculionidae) subjected to three plant tissue diets: Mauritia flexuosa (Arecaceae), Oenocarpus bataua (Arecaceae), and Jacaratia digitata (Caricaceae). Five adult individuals, 2 males, and 3 females were captured for their reproduction in captivity. The hatched larvae were subjected to the three diets for 45 days. After this period, extraction was carried out and the fatty acid profile of the oil was determined. Being oleic monounsaturated fatty acid (18:1) and palmitic saturated fatty acid (16:0), which are found in greater abundance for the three diets. Regarding essential fatty acids, linoleic (18:2) and alpha-linolenic (18:3) fatty acids were detected in concentrations of 1.96 ± 0.028 and 1.14 ± 0.007%, for the diet of Mauritia flexuosa, 0.67 ± 0.007 and 0.43 ± 0.035%, for the diet of Oenocarpus bataua, and 0.76 ± 0.000 and 0.29 ± 0.007%, for the diet of Jacaratia digitata, respectively. The results show that diets influence the type of fatty acid metabolized and its concentration. The larva is a source of monounsaturated fatty acids such as oleic (omega 9) and palmitoleic (omega 7) and of the essential fatty acids linoleic and alpha-linolenic precursors of the fatty acids of the omega 6 and omega 3 families.


Download data is not yet available.

Author Biographies

Julio Cesar Maceda Santivañez, Universidad Nacional Amazónica de Madre de Dios, Madre de Dios, Perú.

Ingeniero Agroindustrial, Escuela profesional de Ingeniería Agroindustrial, Universidad Nacional Amazónica de Madre de Dios, Av. Jorge Chávez 1160, Puerto Maldonado, Madre de Dios, Perú. Postgraduando en Biotecnologia y Recursos Naturales, Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde Av. Carvalho Leal 1777, Manaus, Amazonas, Brasil

Larry Oscar Chañi Paucar, University of Campinas, Campinas, Brazil

PhD student in food engineering, Graduate Program on Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil.


ANGEL-DAPA, M. A.; RODRÍGUEZ-JARAMILLO, C.; CÁCERES-MARTÍNEZ, C. J.; SAUCEDO, P. E. Changes in Lipid Content of Oocytes of the Penshell Atrina maura as a Criterion of Gamete Development and Quality: A Study of Histochemistry and Digital Image Analysis . Journal of Shellfish Research, v. 29, n. 2, p. 407–413, 2010.

ANTONNY, B.; VANNI, S.; SHINDOU, H.; FERREIRA, T. From zero to six double bonds: Phospholipid unsaturation and organelle function. Trends in Cell Biology, v. 25, n. 7, p. 427–436, 2015. 10.1016/j.tcb.2015.03.004. .

BIGAY, J.; ANTONNY, B. Curvature, Lipid Packing, and Electrostatics of Membrane Organelles: Defining Cellular Territories in Determining Specificity. Developmental Cell, v. 23, n. 5, p. 886–895, 2012.

BOATENG, L.; ANSONG, R.; OWUSU, W. B.; STEINER-ASIEDU, M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana medical journal, v. 50, n. 3, p. 189–196, 2016.

CABEZAS-ZÁBALA, C. C.; HERNÁNDEZ-TORRES, B. C.; VARGAS-ZARATE, M. Aceites y grasas: efectos en la salud y regulación mundial. Revista de la Facultad de Medicina, v. 64, n. 4, p. 761–8, 2016.

CALDER, P. C. Fatty acids and inflammation: The cutting edge between food and pharma. European Journal of Pharmacology, v. 668, p. S50–S58, 2011. 10.1016/j.ejphar.2011.05.085.

CARTAY, R. Entre el asombro y el asco: el consumo de insectos en la cuenca amazónica. El caso del Rhynchophorus palmarum (Coleoptera Curculionidae). revista colombiana de antropología, v. 54, n. 2, p. 143–169, 2018.

COSTA-NETO, E. M. Antropoentomofagia Insetos na Alimentação Humana. Editora UEFS, 2011. Feira de Santana.

COSTA-NETO, E. M. Insects as hum food : An overv. Amazon. Rev. Anthropol., v. 5, n. 53, p. 562–582, 2013.

DAVID SANCHO-AGUILERA, DAVID LANDÍVAR-VALVERDE, DIEGO SARABIA-GUEVARA, M. DE J. Á.-G. Caracterización del extracto graso de larvas de Rhynchophorus palmarum L. Ciencia y Tecnología de Alimentos Mayo, v. 25, n. 2, p. 39–44, 2015.

DEFOLIART, G. R. Insects as Human Food Gene Defoliart discusses nutritional and economic aspects. Crop Protection, v. 11, p. 395–99, 1992. 10.1007/978-981-10-1524-3_7.

DEFOLIART, G. R. Edible insects as minilivestock. Biodiversity and Conservation, v. 321, p. 306–321, 1995.

DELGADO, C.; COUTURIER, G.; MATHEWS, P.; MEJIA, K. Producción y comercialización de la larva de “Rhynchophorus palmarum” (Coleoptera: Dryophtoridae) en la Amazonía peruana. Boletín de la SEA, v. 41, n. 42, p. 407–412, 2008.

DELGADO, C.; ROMERO, R.; ESPINOZA, R. V.; TRIGOZO, M.; CORREA, R. Rhynchophorus palmarum used in Traditonal Medicine in the Peruvian Amazon. Ethnobiology Letters, v. 10, n. 1, p. 120–128, 2019.

DORNI, C.; SHARMA, P.; SAIKIA, G.; LONGVAH, T. Fatty acid profile of edible oils and fats consumed in India. Food Chemistry, v. 238, p. 9–15, 2018. 10.1016/j.foodchem.2017.05.072.

DUE, E. A.; ZABRI, H. C. B. L.; KOUADIO, J. P. E. N.; KOUAME, L. P. Fatty acid composition and properties of skin and digestive fat content oils from Rhynchophorus palmarum L. larva. African Journal of Biochemistry Research, v. 3, n. 4, p. 089–094, 2009.

DYALL, S. C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience, v. 7, n. 52, p. 1–15, 2015.

ESHAK, E. S.; ISO, H.; YAMAGISHI, K.; CUI, R.; TAMAKOSHI, A. Dietary intakes of fat soluble vitamins as predictors of mortality from heart failure in a large prospective cohort study. Nutrition, v. 47, p. 50–55, 2018. 10.1016/j.nut.2017.09.009

FABIAN, C. J.; KIMLER, B. F.; HURSTING, S. D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Research, v. 17, n. 1, p. 1–11, 2015.

FAPESP. Insetos comestíveis. 2020. Disponível em: . .

FINKE, M. D.; OONINCX, D. Insects as Food for Insectivores. Elsevier, 2013.

FOGANG MBA, A. R.; KANSCI, G.; VIAU, M.; et al. Lipid and amino acid profiles support the potential of Rhynchophorus phoenicis larvae for human nutrition. Journal of Food Composition and Analysis, v. 60, p. 64–73, 2017. 10.1016/j.jfca.2017.03.016

FOOD AND ARGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Edible insects. Future prospects for food and feed security. 2013.

GBOGOURI, G. A.; BEUGRE, G. A. M.; BROU, K.; ATCHIBRI, O. A.; LINDER, M. Rhynchophorus palmarum L. larva, an edible insect in Côte d’Ivoire: Nutritional value and characterization of the lipid fraction. International Journal of Chemical Sciences, v. 11, n. 4, p. 1692–1704, 2013.

GIBLIN-DAVIS, R. M.; GERBER, K.; GRIFFITH, R. Laboratory Rearing of Rhynchophorus cruentatus and R. palmarum (Coleoptera: Curculionidae). The Florida Entomologist, 1989.

JORIS, P. J.; MENSINK, R. P. Role of cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease. Current Atherosclerosis Reports, v. 18, n. 7, p. 38, 2016. Current Atherosclerosis Reports. 10.1007/s11883-016-0597-y

KAHM, F.; MEJÍA, K. Las palmeras nativas de importancia economica en La amazonia peruana. Folia Amazónica, v. 1, n. 1–2, p. 103–116, 2006.

KRATZ, M.; MARCOVINA, S.; NELSON, J. E.; et al. Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. American Journal of Clinical Nutrition, v. 99, n. 6, p. 1385–1396, 2014.

MEXZÓN, R. G.; CHINCHILLA, C. M.; CASTRILLO, G.; DANNY, S. Biología y hábitos de Rhynchophorus palmarum L. asociado a la palma aceitera en Costa Rica. ASD Oil Palm Papers, v. 8, n. 8, p. 14–21, 1994.

MICHAELSEN, K. F.; HOPPE, C.; ROOS, N.; et al. Choice of foods and ingredients for moderately malnourished children 6 months to 5 years of age. Food and Nutrition Bulletin, v. 30, n. 3, p. S343–S404, 2009.

MÜLLER, C. P.; REICHEL, M.; MÜHLE, C.; et al. Brain membrane lipids in major depression and anxiety disorders. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, v. 1851, n. 8, p. 1052–1065, 2015. 10.1016/j.bbalip.2014.12.014

PASSOS, M. E. P.; ALVES, H. H. O.; MOMESSO, C. M.; et al. Differential effects of palmitoleic acid on human lymphocyte proliferation and function. Lipids in Health and Disease, v. 15, n. 1, p. 1–11, 2016. 10.1186/s12944-016-0385-2

QUEIROZ, A.; DE ALMEIDA, S.; KRUG, C.; ALVES, W. A. Manejo de Rhynchophorus palmarum em Campo de Produção de Sementes de Palma de Óleo. Manaus, AM, 2013.

ROSKOSKI, R. Bioquimica. McGraw-Hill, 1998. México.

RUIZ, C.; DÍAZ, C.; ANAYA, J.; ROJAS, R. Análisis proximal, antinutrientes, perfil de ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de sacha inchi (Plukenetia volubilis y Plukenetia huayllabambana). Revista de la Sociedad Química del Perú, v. 79, n. 1, p. 29–36, 2013.

RUMPOLD, B. A.; SCHLÜTER, O. K. Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, v. 57, n. 5, p. 802–823, 2013.

SANTANA, C. C.; NASCIMENTO, J. S.; DE COSTA, M. M.; et al. Avaliação do desenvolvimento e reservas energéticas de larvas de Rhynchophorus palmarum (Coleoptera:Curculionidae) em diferentes dietas. Revista Brasileirade Ciencias Agrarias, v. 9, n. 2, p. 205–209, 2014.

SIMOPOULOS, A. P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients, v. 8, n. 3, p. 1–17, 2016.

SOUZA, C. O.; TEIXEIRA, A. A. S.; BIONDO, L. A.; et al. Palmitoleic acid reduces the inflammation in LPS-stimulated macrophages by inhibition of NFκB, independently of PPARs. Clinical and Experimental Pharmacology and Physiology, v. 44, n. 5, p. 566–575, 2017. 10.1111/1440-1681.12736

TZOMPA-SOSA, D. A.; YI, L.; VAN VALENBERG, H. J. F.; VAN BOEKEL, M. A. J. S.; LAKEMOND, C. M. M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Research International, v. 62, p. 1087–1094, 2014. 10.1016/j.foodres.2014.05.052

VAFEIADOU, K.; WEECH, M.; ALTOWAIJRI, H.; et al. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: Results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. American Journal of Clinical Nutrition, v. 102, n. 1, p. 40–48, 2015.

VALENZUELA, A.; SUSANA, N. Ácidos grasos omega-6 y omega-3 en la nutrición perinatal: su importancia en el desarrollo del sistema nervioso y visual. Rev Chil Pediatr, v. 74, p. 149–57, 2003.

VARGAS, G. E.; ESPINOZA, G.; RUIZ, C.; ROJAS, R. Valor nutricional de la Larva de Rhynchophorus palmarum L .: Comida tradicional en la amazonía peruana. Revista de la sociedad química del Perú, v. 79, n. 1, p. 64–70, 2013.

VELDKAMP, T.; VAN DUINKERKEN, G.; VAN HUIS, A.; et al. Insects as a sustainable feed ingredient in pig and poultry diets-a feasibility study. Food Chemistry, v. 50, p. 192–195, 2012.

VAN HUIS, A. Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, v. 58, n. 1, p. 563–583, 2013.

VAN HUIS, A. Environmental Sustainability of Insects as Human Food. Reference Module in Food Science, p. 1–5, 2019. 10.1016/B978-0-08-100596-5.22589-4

WALLACE, T. C. Health Effects of Coconut Oil—A Narrative Review of Current Evidence. Journal of the American College of Nutrition, v. 38, n. 2, p. 97–107, 2019. Taylor & Francis. 10.1080/07315724.2018.1497562

WANG, H.; MALEKY, F. Effects of cocoa butter triacylglycerides and minor compounds on oil migration. Food Research International, v. 106, p. 213–224, 2018. 10.1016/j.foodres.2017.12.057

WATANABE, Y.; TATSUNO, I. Prevention of Cardiovascular Events with Omega-3 Polyunsaturated. The official journal of the Japan Atherosclerosis Society and the Asian Pacific Society of Atherosclerosis and Vascular Diseases, v. 26, p. 183–198, 2019.

WEYLANDT, K. H.; CHIU, C. Y.; GOMOLKA, B.; WAECHTER, S. F.; WIEDENMANN, B. Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation. Omega-3 fatty acids and their resolvin/protectin mediators. Prostaglandins and Other Lipid Mediators, v. 97, n. 3–4, p. 73–82, 2012. 10.1016/j.prostaglandins.2012.01.005

YEHUDA, S.; RABINOVITZ, S.; CARASSO, R. L.; MOSTOFSKY, D. I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiology of Aging, v. 23, n. 5, p. 843–853, 2002.